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 The Costa Rica hydrogeology operation proposes to replace CORK-II downhole in-
strument strings in holes drilled at Ocean Drilling Program (ODP) Leg 205 Sites 1253
and 1255 (September–November 2002) off Costa Rica. The CORKs are instrumented
in a fractured horizon in the oceanic section of the incoming plate and in the décol-
lement zone to investigate fluid flow across the margin and its implications for the
seismogenic zone and subduction factory. During Atlantis cruise 11-8 (27 February–7
March 2004) the Alvin was unable to recover the downhole osmotic fluid samplers
and miniaturized temperature loggers and was thus unable to deploy the new instru-
ment strings. Apparently, soft debris in the borehole buried the latch, and the limited
bottom time, lighter-weight running tools necessary for the Alvin, and limited capac-
ity of the wellhead winch frustrated recovery efforts. These impediments present no
significant obstacles to a drillship, as discussed below. Pressure data downloaded
from the samplers at Sites 1253 and 1255 record two transient events; evaluation of
temperature and fluid chemistry data from the downhole instruments at the two sites
is critical to investigating strain or hydrological origins of the pressure events. The os-
motic samplers currently installed were designed to collect a time series of samples
for fluid and gas analyses over a 2 y period; after 2 y, samples and the information
they contain are progressively lost. The temperature loggers will stop recovering data
after 6 October 2004. The drillship work proposed here will be done during the transit
following Integrated Ocean Drilling Program (IODP) Expedition 301 after the sched-
uled port call at Astoria, Oregon, en route to the Panama Canal.
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Expedition 301T is based on Integrated Ocean Drilling Program (IODP) ancillary pro-
gram letter number 641 (available at www.isas-office.jp/scheduled.html). Follow-
ing ranking by the IODP Scientific Advisory Structure, the expedition was scheduled
by the IODP Operations Committee for the research vessel JOIDES Resolution, operat-
ing under contract with the U.S. Implementing Organization (USIO). The expedition
is currently scheduled to depart Astoria, Oregon (USA), on 22 August 2004 and to end
in St. John’s, Newfoundland (Canada), on 22 September 2004 (for the current de-
tailed schedule, see iodp.tamu.edu/scienceops/). A total of 3 days will be available
for the installation of subseafloor observatories described in this report. Further de-
tails on the JOIDES Resolution can be found at iodp.tamu.edu.
�
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Following publication, the IODP-MI, Sapporo web site was retired. The proposal is available from http://iodp.tamu.edu/scienceops/expeditions/exp301T.html
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The character of the subducting plate at a convergent margin and the processes af-
fecting it as it passes below the shallow forearc may be a major determining factor in
the nature and extent of hazardous interplate seismicity, magnitude of volcanism,
and chemistry of lavas produced in the overlying volcanic arc. Subducting sediments
and ocean crust along with their associated volatile components passing through
shallow subduction zones (0–50 km) profoundly affect the behavior of the seis-
mogenic zone, which produces most of the world’s destructive earthquakes and tsu-
namis. Fluid pressure and sediment porosity influence fault localization, deformation
style, and strength and may control the updip limit of the seismogenic zone (e.g.,
Scholz, 1998; Moore and Saffer, 2001). Fluids contained within both fault zones and
underthrust sediments at the trench affect early structural development and serve as
a key agent in transport of chemical species. The mineralogy and chemistry of sub-
ducted sediments and the dehydration reactions during the subduction process may
control the physical properties of the deeper subduction interface and, hence, down-
dip limits of the seismogenic zone.

Escape of fluids to the surface from depth (return flow) supports a deep biosphere,
contributes methane for gas hydrate formation, affects seawater chemistry for se-
lected elements, and is intimately linked to deformation, faulting, and evolution of
the décollement. Distillation and partial loss of volatiles and fluid-soluble elements
from the shallow slab not only record reactions and processes within the seismogenic
zone but also play a central role in supplying residual volatiles to the deeper Earth
and changing the composition of the slab delivered to magmatism depths beneath
volcanic arcs. Processes operating in the shallow subduction zone thus affect the way
the slab contributes to continent-building magmatism, explosive volcanism, ore for-
mation, and, ultimately, evolution of the mantle through time (collectively known as
the “subduction factory” in many geoscience documents). The subduction signature
recorded in the chemistry of arc volcanics constrains the nature and sometimes the
volume of the sediments transported through the seismogenic zone to the depths of
magmatism. The arc thus acts as a flow monitor for the transport of sediments to
depths greater than those that can be drilled or seismically imaged.

The Ocean Drilling Program (ODP) has identified deformation at convergent mar-
gins, fluid flow in the lithosphere, and subduction zone geochemical fluxes as impor-
tant aspects of the Joint Oceanographic Institutions for Deep Earth Sampling
(JOIDES) Long Range Plan (1996). The Initial Science Plan for the Integrated Ocean
�
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Drilling Program (IODP) includes an initiative focused on the seismogenic zone. The
Central American convergent margin (Fig. F1) is a focus area for a number of na-
tional and international programs studying the seismogenic zone and subduction
factory for several reasons: 

• It is one of the few modern subduction zones that is subducting a significant car-
bonate section and thus provides an opportunity to investigate CO2 cycling
through convergent margins. 

• Along strike from Nicaragua to Costa Rica, the style and extent of seismicity and
plate coupling changes.

• Along the same section, the style of arc volcanism changes, as do volumes and
chemistry of arc lavas. 

It has been hypothesized that changes in both seismicity and volcanic chemistry re-
sult from changes in the balance between sediment underplating, erosion, and sub-
duction (collectively referred to here as “sediment dynamics”), perhaps related to
changing bathymetry, thermal structure, and hydrological behavior along the mar-
gin.
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A description of the geological setting of the Costa Rica margin sites can be found in
the “Leg 205 Summary” chapter (Shipboard Scientific Party, 2003) of the Leg 205 Ini-
tial Reports volume (Morris, Villinger, Klaus, et al., 2003).
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Because the Costa Rica hydrogeology ancillary program will reoccupy previously
drilled sites, no additional site survey data are required.
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During ODP Leg 205, Cork-II observatories were installed at two sites across the Mid-
dle America Trench off the Nicoya Peninsula, Costa Rica (Fig. F1), drilled previously
during Leg 170 (Kimura, Silver, Blum, et al., 1997; Morris, Villinger, Klaus, et al.,
2003). The observatories are designed to monitor pressure and temperature changes
�
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through time in a horizon of subseafloor fluid flow and to collect a time series of fluid
and gas samples for subsequent chemical analysis (Jannasch et al., 2003). One ob-
servatory was installed at Site 1253 on the incoming oceanic plate with instruments
located within the fractured igneous section at 494–504 and 512–520 meters below
seafloor (mbsf). Another CORK-II was installed at Site 1255, 0.4 km inboard of the de-
formation front, to monitor and sample the region of maximum fluid advection
within the décollement at 136–144 mbsf. Downhole instrumentation in the décolle-
ment includes a flow meter, such that dilution of tracers injected at a constant rate
translates to fluid flux and the four sampling ports may allow identification of
anisotropy in fluid flow.

The science goals of the present operation remain those of ODP Leg 205—to investi-
gate active fluid flow across the Costa Rica margin and its implications for the seis-
mogenic zone and subduction factory. One specific opportunity this operation affords
is combination of pressure data recovered during the Atlantis cruise with downhole
temperature variations through time and the time series chemical data to investigate
the transient pressure events recorded at Site 1253 and the overpressured décollement
at Site 1255. 
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There is strong evidence for vigorous shallow flow of cool fluids, which may affect the
updip limit of seismicity, in the oceanic section of the subducting plate at Sites 1039
and 1253. East Pacific Rise (EPR)-generated oceanic crust (~24 Ma) at the drill sites is
part of a large regional low heat flow anomaly; at the Leg 170 and 205 sites, heat
flow is ~15% of that expected for the plate age, implying significant advection of cool
fluids (Langseth and Silver, 1996). Heat flow data collected during recent cruises show
that seamounts are sites of fluid discharge and recharge (Fisher et al., 2003), and
modeling suggests that lateral flow rates of 3–30 m/y in zones within the upper 600
m of high-permeability (10–10 to 10–8 m2) basement are required to match the low
heat flow on EPR-generated crust (Hutnak et al., submitted, 2003). Chemical data
also suggest vigorous and recent/contemporaneous fluid flow. For example, Sr isoto-
pic compositions measured in pore fluids squeezed from sediments show a strong
mixing trend toward modern seawater ratios in the basal sediments. These basal sed-
iment values are distinct from those appropriate for seawater contemporaneous with
the sediment age or for pore fluid compositions modified by ash weathering, as seen
higher in the sediment column (Silver et al., 2000). Simple modeling suggests that un-
less supported, the gradients, also observed for Li, Ca, and SO4, would normalize by
�
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diffusion in ~15 k.y. Just south of the drill sites, plate reorganizations juxtapose cool
EPR crust and ~22 Ma crust generated at the Cocos-Nazca spreading (CNS) center
(Barckhausen et al., 2001), which is characterized by heat flow consistent with con-
ductive lithospheric cooling models. This juxtaposition apparently corresponds to a
significant change in the updip limit of the seismogenic zone. At 75 km from the
trench, where cool EPR crust is subducting, this zone is at ~20 km depth; at ~60 km
from the trench, where warmer CNS crust is subducting, this zone is at ~10 km depth
(Newman et al., 2002). At Site 1253, the interval below 473 mbsf is packed off and
two OsmoSamplers with temperature loggers are centered within fractured intervals
at 500 and 516 mbsf, respectively.
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Fluids from the décollement zone can be analyzed for a variety of chemical tracers to
identify fluid sources, map fluid and element transport, constrain fluid fluxes, and
possibly help constrain mineralogy at the updip limit of the seismogenic zone. At the
décollement sites (1040, 1043, 1254, and 1255), pore fluid analyses across the plate
boundary show strong, narrow (less than the full depth of the décollement zone)
anomalous abundances of thermogenic hydrocarbons through C10 and other tracers
(e.g., Ca, K, and Li). Taken together, the compositional anomalies indicate vigorous
advection within the décollement transporting species generated at temperatures
>150°C (i.e., at or near temperatures thought to exist at the updip limit of the seis-
mogenic zone). The persistence of local compositional anomalies suggests transient
flow. The OsmoSampler and OsmoFlowmeter are located within the décollement at
Site 1255. Tracers such as K/Li ratios and B and Cl isotopes in the fluids may constrain
the extent of smectite-illite reaction in the fluid source region; adding O and Sr iso-
tope ratios should further constrain bulk composition and temperature of the fluid
source region. Tracers of interest to geochemists investigating element recycling in
volcanic arcs via subduction (e.g., U, Pb, Rb, Sr, Ba, Cs, As, B, and Li) will also be an-
alyzed in the sampled fluids. Pumping at a constant rate, the OsmoFlowmeters inject
density-compensated iodate-tagged artificial seawater, Cs, and Rb into the borehole
below the OsmoSampler. Four sampling ports on a plane with the injection port col-
lect and archive a time series of tagged fluids for subsequent recovery and analyses.
Dilution of these tracers will constrain fluxes and, possibly, anisotropy (although not
directionality in a geographic sense) of fluid flow. Flux rates of elements from the sub-
ducting plate carried in fluids advected from the deeper source will be useful for in-
vestigating methane fluxes and the impact of shallow slab dewatering on ocean
�
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chemistry and composition of the residual subducted slab at greater depths (ulti-
mately to depths of magma generation).
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Dive operations during the Atlantis cruise included downloading data from the mul-
tilevel CORKs at Sites 1253 (sampling/monitoring screens at two levels in uppermost
igneous basement) and 1255 (screens at the décollement and in the overthrust sec-
tion). Pressure variations are dominated by tides at the seafloor, response to seafloor
tidal loading in the formation, and overpressures at Site 1255. Complete hydrologic
sealing took several weeks; the most significant leakage in the first few weeks of mon-
itoring is inferred to have been associated with the high-pressure polypack glands
that seal the CORK liner and main casing. Once the seals seated, signals ranging in
period from weeks to minutes are observed from barometric, oceanographic, and tec-
tonic sources. Several observations, summarized in the records shown in Figure F2,
are of particular interest from a hydrologic and geochemical perspective.

At Site 1253, basement is underpressured relative to the local geotherm hydrostat by
~7 kPa (Fig. F2A), from which it can be inferred that the basement is highly perme-
able and provides a close-to-hydrostatic drainage path to the ocean for the seaward
part of the underthrust sediment section. The degree to which fluids squeezed from
the subduction zone sediment complex influence basement fluid composition re-
mains unknown, but it is clear that upper permeable basement provides a link to
deep-sourced fluids. Thus, obtaining basement fluid samples is an important priority.
Because of the subhydrostatic basement state, this fluid sampling can be done only
with an in situ sampler sealed in the hole.

At Site 1255, fluid pressures in the décollement and the overlying overthrust sedi-
ments are superhydrostatic, varying with time (Fig. F2B). Maximum pressures are a
significant fraction of lithostatic and decline steadily over the first few months of re-
cording. Several events of tectonic (elastic) or hydrologic (diffusional) origin are ob-
served at both screens. One of these (labeled “first event”) is seen at the upper screen
roughly 2 days before the décollement screen. This precludes the possibility that the
event is associated with motion of the packer and indicates a hydrologic source. Ob-
servations of fluid-compositional variations will be critical for determining the cause
of such events and the slow pressure decline.
�
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Following is a summary of Leg 205 operations at the two sites to be reoccupied during
the Costa Rica hydrogeology project (Table T1). More complete information regard-
ing these sites can be found in the site chapters in the Leg 205 Initial Reports volume
(Morris, Villinger, Klaus, et al., 2003).
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Site 1253 is located ~200 m seaward of the deformation front in the deepest part of
the Middle America Trench (Figs. F3, F4) Operationally, the primary goal for this site
was to recore the sediments immediately above the sill encountered during Leg 170,
drill and core for the first time through the sediments below the sill, and core >100 m
into the oceanic sections. The other major task was to install a CORK-II observatory
in the deep igneous section; coring and logging information was used to identify
depths to set the packer and osmotic fluid and gas samplers. 

One hole was drilled at Site 1253, which was partially cored and into which we in-
stalled a long-term hydrologic borehole observatory. After setting a reentry cone and
161/2 inch casing into the seafloor, the hole was reentered with the rotary core barrel
(RCB) and drilled without coring to ~370 mbsf. RCB coring below 370 mbsf pene-
trated 30 m of calcareous and locally clay rich sediments with intermittent ash layers
(average recovery = 75%) before encountering a gabbro sill between 400 and 431
mbsf (average recovery = 74%). Below the sill was ~30 m of partially lithified calcar-
eous sediments with intermittent ash layers (average recovery = 20%). This interval
was followed by coring ~140 m into a second igneous unit (average recovery = 75%)
with local zones of 55%–50% recovery. 

After coring, operations focused on preparing the hole for downhole logging and
CORK-II installation. The hole was opened to 143/4 inches; 103/4 inch casing was in-
stalled to ~413 mbsf and cemented in place to inhibit communication between the
borehole and the formation. After drilling out the cement shoe and drilling a rat hole
with an RCB bit, the hole was logged. 

After logging, the CORK-II components were assembled, including a 41/2 inch casing
screen, casing packer, and casing made up to the instrument hanger. The entire as-
sembly was lowered into the hole and latched in to seal the borehole outside of the
41/2 inch casing. The OsmoSampler with integral temperature sensors was lowered
through the center of, and latched into the bottom of, the 41/2 inch casing. The final
�
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operation was to inflate the packers and shift spool valves connecting the CORK-II
pressure monitoring system to the formation, completely sealing the zone to be mon-
itored. Problems with the go-devil used for this step made it difficult to determine
whether the packer had inflated or the valves had turned for pressure monitoring.
Alvin dives since then have confirmed that the installation is fully operational. Three
absolute pressure gauges including a data logger are installed in the instrument
hanger head. One sensor monitors pressure within the sealed-off fluid sampling zone
at the bottom of the hole, one monitors pressure variations in the borehole above the
sealed-off section, and the third sensor provides seafloor reference pressures. One ad-
ditional sampling line extends from the CORK-II head down to the screened interval
below the packer and is available for future pressure/fluid sampling purposes. The
specifics of the CORK-II installation, relative to the structure and petrology of the ig-
neous sections, are discussed in more detail below. 

Details of the CORK-II installation in Hole 1253A are shown in Figure F5, and petro-
logical and structural characteristics of key depths are shown in Figures F6 and F7.
The center of the packer was set at ~473 mbsf, with the inflatable element between
471.5 and 475.5 mbsf. Cores show this to be a high-recovery interval of massive rock
with relatively few fractures. The upper OsmoSampler, inside a 7.35 m long screen, is
set between 497 and 504 mbsf. A fluid sampling line runs from a 2 m pressure screen
within the casing screen to the CORK-II wellhead. The lower sampler dangles in the
open hole between 512.1 and 519.5 mbsf. The placement of the osmotic samplers was
determined using a combination of scientific and operational constraints. Originally,
the intervals 513–521 (now OsmoSampler 2) and 560–568 mbsf were targeted. How-
ever, logging tools encountered a bridge at 530 mbsf, restricting OsmoSampler de-
ployment to shallower levels. The upper pressure screen above the packer was set
between two igneous subunits, where sediments collapsing around the screen should
make an effective seal. The final installation configuration for this modified CORK-II
geochemical and hydrologic borehole observatory is shown in Figure F5. 

�
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Site 1255 is located ~0.4 km arcward of the deformation front in a water depth of
4311.6 m and close to the Site 1043 holes drilled during Leg 170 (Kimura, Silver,
Blum, et al., 1997). Hole 1255A is ~20 m east of Hole 1043A and ~30 m northwest of
Hole 1043B (Figs. F3, F8, F9). In Hole 1043A the complete section was cored to 282
mbsf in the underthrust sequence (Unit U3), whereas Hole 1043B was logged using
logging while drilling (LWD) to 482 mbsf, the top of igneous basement. Both holes
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penetrated the décollement, and their results were used to plan drilling strategy and
installation of the CORK-II observatory. 

After setting the reentry cone in Hole 1255A, the hole was deepened to 123 mbsf with
a 143/4 inch bit, followed by installation of 103/4 inch casing to 117 mbsf and ce-
mented it in. Coring started at 123 mbsf, after drilling out the cement shoe, and
stopped at 157 mbsf, when a sudden increase in penetration rate during cutting of
the fourth core indicated that the underthrust sediments had been reached. Installa-
tion of the CORK-II was successful and was completed with deployment of the re-
motely operated vehicle (ROV) platform. The observatory configuration is shown in
Figure F10. The center of the packer is at 129 mbsf and the center of the screen at 140
mbsf, in the middle of the geochemical anomaly determined from data from Sites
1255 and 1043. A second pressure port inside a small screen was installed just above
the upper packer. A postcruise Alvin dive showed the installation to be fully opera-
tional, and pressure data showed a return to hydrostatic conditions within the bore-
hole. 
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Eight Alvin dives were planned for recovering and replacing the OsmoSamplers and
temperature loggers at Sites 1253 and 1255. The intent was to place a winch on top
of the wellhead, latch on to the instrument string with the running tool, and use the
winch to break the seal and pull the OsmoSamplers to the wellhead, where they could
be floated to the surface. Replacement samplers dropped by elevator would then be
guided hand-over-hand into the 4.5 inch casing and allowed to free fall to seat. The
Alvin and Atlantis crews performed superbly, but we encountered several problems.
During dive 1 we installed the winch. During dive 2 we were unable to latch the run-
ning tool into the sampler despite repeated attempts; slack and additional play in the
winch line suggested soft debris, possibly rust brushed from the 4.5 inch casing by
passage of the tool and line atop the samplers, occluding the latch. The running tool
was recovered and additional jars added in an attempt to penetrate the debris with a
heavier tool. Eventually, after overcoming several other problems, the running tool
latched into the OsmoSampler package, as determined from pull on the winching
motor. A design incompatibility between the winch and optimal Alvin operations re-
sulted in the OsmoSamplers being dropped back into the hole after being winched up
70–100 m. During penultimate dive 7, we made a brief attempt to retrieve the Osmo-
Samplers, but time limitations made them impossible to recover, given the need to
secure the sites and recover materials on bottom. 
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Ultimately, pressure data were downloaded at both sites; Site 1255 was left in its orig-
inal condition, and Site 1253 was left with the OsmoSamplers seated at depth, the
tools and ~550 m of Spectra line attached, and a ring and float attached ~20 m above
the wellhead. The impact of the engineering and borehole complications were, of
course, exacerbated by Alvin’s limited bottom time in deep water and power. Al-
though these factors were recognized before scheduling ship time, Jason was fully
booked through and beyond the 2 y window of the OsmoSampler and temperature
logger configuration. Lessons learned from this Atlantis cruise benefited final engi-
neering design and fabrication for IODP Expedition 301. 

Sites 1253 and 1255 were left ready for OsmoSampler recovery and replacement by
the JOIDES Resolution or ROV. The drillship provides heavier wireline tools and there-
fore more jarring action to penetrate the soft debris and latch in. Our experience sug-
gests that it should be simple to latch in, but bailing soft debris from the hole is a
possibility if necessary. Using the JOIDES Resolution to recover and replace the Osmo-
Samplers allows us to install lines to the seafloor that will make future ROV/submers-
ible recoveries feasible without the submersible winch system, which has been
problematic as presently configured. Continuous operations allow for time-efficient
recovery and reinstallation. 

The operations time estimate for OsmoSampler recovery and replacement is listed in
Table T1. All operations are relatively straightforward and have been performed us-
ing the JOIDES Resolution in the past. The time estimate for operations at the Leg 205
sites is ~3 days (see Table T1). Costa Rica Sites 1253 and 1255 are conveniently lo-
cated relative to the drillship transit following IODP Expedition 301, after the Astoria,
Oregon, port call en route to the Panama Canal.

In addition to replacing the OsmoSamplers at Sites 1253 and 1255, we anticipate de-
ploying a long-term current meter to record near-bottom currents close to the sites,
subject to approval by Costa Rican authorities. The motivation for the experiment de-
rives from a long-term record of bottom water temperature obtained from the first
phase of borehole hydrologic monitoring, which reveals coherent variability between
the two instrumented sites (ODP Sites 1253 and 1255) that is characterized by slow
increases in temperature followed by abrupt decreases. Strong currents aligned with
the trench axis are suspected. Bottom water temperature monitoring, along with sea-
floor fluid sampling, will continue throughout the current meter deployment period.
Together, these data should provide new insights into deep-ocean water transport
along continental margins. The current meter, which consists of a Nortek “Aqua-
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dopp” acoustic doppler sensor, two acoustic release units, a float, and a railway wheel
weight, will be deployed near Site 1253. At the time of this prospectus, the approval
request is pending.
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The Sample Allocation Committee (SAC; composed of co-chief scientists, staff scien-
tist, and IODP curator on shore and curatorial representative on board ship) will work
with the scientific party to formulate a formal expedition-specific sampling plan for
shipboard and postcruise sampling. 

Shipboard scientists are expected to submit sample requests before the beginning of
the expedition. Based on sample requests (shore based and shipboard) submitted by
this deadline, the SAC will prepare a tentative sampling plan, which will be revised
on the ship as dictated by recovery and cruise objectives. The sampling plan will be
subject to modification depending upon the actual material recovered and collabo-
rations that may evolve between scientists during the expedition. Modification of the
strategy during the expedition must be approved by the chief scientist and staff sci-
entist on board ship.

Because the samples recovered from the OsmoSamplers will consist of fluids and will
be totally consumed by subsequent analysis, there will be no samples to archive from
this expedition.
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Table T1. Costa Rica hydrogeology operations plan and time estimate.

Note: BHA = bottom-hole assembly, VIT = vibration-isolated television.

Time (h) Operations description

1.00 Drop beacon midway between Site 1253 and Site 1255.

1.00 Take up station over Site 1255 CORK-II.

8.00 Run in hole with BHA.

0.25 Run in hole with VIT.

0.50 Space out for BHA latch onto Site 1255 wellhead, load wireline into drill string.

1.00 Latch BHA onto Site 1255 wellhead.

0.50 Run in hole with wireline.

0.50 Jar/latch Site 1255 OsmoSampler.

0.75 Pull out of hole with wireline, unlatch BHA from Site 1255 wellhead.

0.50 Lay out Site 1255 OsmoSampler.

0.50 Load Site 1255 replacement OsmoSampler into drill string.

0.75 Run in hole with Site 1255 replacement OsmoSampler, latch BHA onto wellhead.

0.50 Latch Site 1255 OsmoSampler in place, release running tool.

0.75 Pull out of hole with wireline, unlatch BHA from wellhead, lay out wireline sinker bar.

0.25 Pull out of hole with VIT.

7.00 Pull out of hole with BHA (while making dynamic positioning move).

1.00 Dynamic positioning move from Site 1255 to Site 1253, take up station over Site 1253 CORK-II.

8.00 Run in hole with BHA fishing tool.

0.25 Run in hole with VIT.

2.00 Fish for Site 1253 OsmoSampler rope.

8.00 Pull out of hole with BHA fishing tool and Site 1253 OsmoSampler.

0.25 Pull out of hole with VIT.

2.00 Lay out Site 1253 OsmoSampler.

8.00 Run in hole with BHA.

0.25 Run in hole with VIT.

0.75 Space out for Site 1253 wellhead latch on, load replacement OsmoSampler into drill string.

0.50 Latch BHA onto Site 1253 wellhead.

0.25 Run in hole with Site 1253 OsmoSampler.

0.50 Jar/latch Site 1253 OsmoSampler into place.

0.75 Pull out of hole with wireline, unlatch BHA from Site 1253 wellhead.

8.00 Pull out of hole with BHA.

0.25 Pull out of hole with VIT.

0.00 Recover beacon (while pulling out of hole with BHA).

64.50 Total time (h)

2.69 Total time (days)
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Figure F1. Location of Leg 205 sites offshore Nicoya Peninsula, Costa Rica (Morris, Villinger, Klaus, et al.,
2003). Plate boundaries and ages from Barckhausen et al., 2001. Juxtaposition of East Pacific Rise crust
and Cocos-Nazca Spreading (CNS) center crust, just south of drill sites, approximately corresponds to the
depth offset in the seismogenic zone updip limit. Subaerial triangles indicate volcano locations.
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Figure F2. A. Pressure vs. time, Site 1253. B. Pressure vs. time, Site 1255. Note difference in pressure scales.
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Figure F3. Bathymetric map of the Leg 205 drilling area: yellow dots = Leg 205 sites, white dots = Leg 170
sites. Seismic profiles: red = BGR 99-44 (C. Reichert and C. Ranero, pers. comm., 2001), yellow = CR-20
(Shipley et al., 1992). Leg 170 drill sites were based on seismic profile CR-20. Numbers along Line BGR 99-
44 are shotpoints. White arrow = convergence direction (N30°E) and rate (88 mm/y) (DeMets et al., 1990).
Bathymetric contours are in meters. (Integration of compilation by Ranero and von Huene [2000] and
Simrad data from E. Flueh [pers. comm., 2000]).
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Figure F4. Portion of multichannel seismic profile BGR 99-44 across Sites 1253 and 1039. Vertical exag-
geration = ~1.6.
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Figure F5. Hole 1253A borehole installation showing subseafloor depths for OsmoSamplers, screens,
packers, and casing strings. This figure is not to scale.
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Figure F6. Composite diagram from Hole 1253A showing selected logging data annotated with physical property measurements on the cores,
p intervals are shown as solid lines
t indicated are the positions of the
t

Polarity

10-4 10-2 100

Intensity (A/m)
after 20-mT AF demagnetization

ine

s

s

e to
ed
etrologic observations, and paleomagnetic and rock magnetic results. Correlations between core and logging 
o indicate major boundaries or as dashed lines to indicate subunit boundaries identified petrologically. Also 
wo OsmoSamplers (OS #1 and OS #2).

D
ep

th
(m

bs
f)

C
or

e

R
ec

ov
er

y

400

410

420

430

440

450

460

470

480

490

500

510

520

10 20(In)

Hole diameter
1 3(g/cm3)

Density
1 3(g/cm3)

Density (Core)

100 0(%)

Porosity (Neutron)
100 0(%)

Porosity (Core)

0.2 2000(Ωm)

Shallow resistivity
1500 6500(m/s)

Velocity (Core)
1.5 6.5(km/s)

Velocity

450

350

550

600

Core recovery (%)

Subunit 3C

Subunit 3C

20 60 100 140

Depth
(mbsf)

1. Cryptocrystall

2. Magmatic 
    contacts

3. More filled
    veins and void

4. 5% alteration

5. Veins, fracture

6. Homogeneous
    microcrystallin
    medium grain

Subunit 4A
Gabbro sill

OS #1

OS #2

Subunit
4B-1

4B-2

4B-3

4B-4

4B-5

4B-6

4B-7

Subunit 4B
Lower
igneous
unit

500

400

5R

6R

7R

8R

9R

10R

11R

12R

13R

14R

15R

16R

17R

18R

19R

20R
21R

22R

23R

24R

25R

26R



�
�
�
�
�
����

	

�
�


�

�
�
��
	
�����


�
��
�
�
�
�
��
�

Figure F7. Composite diagram from Hole 1253A showing fracture distribution within the igneous units, a summary of petrologic observations,
a ere installed.
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Figure F8. Location of Site 1255. Red circle = Leg 205 site, black circles = Leg 170 sites. (Integration of
compilation by Ranero and von Huene [2000] and Simrad data from E. Flueh [pers. comm., 2000]).
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Figure F9. Portion of multichannel seismic profile BGR 99-44 across Sites 1255 and 1043. Vertical exag-
geration = 1.7. CMP = common midpoint.
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Figure F10. Hole 1255A borehole installation showing subseafloor depths for OsmoSamplers, screens,
packers, and casing strings. This figure is not to scale. 

OsmoSampler
4457.08 mbrf 
(134.08 mbsf)

OsmoSampler seat
4462.77 mbrf 
(139.77 mbsf)

CORK-II wellhead

CORK-II wellhead top: 4317.06 (4305.66 mbsl)

Hole 1255A CORK-II OsmoSampler installation space-out

5.69 m

4.51 m

0.30 m

4-1/2" casing
string length 123.40 m

Seafloor: 4323.0 mbrf (4311.6 mbsl)

Reentry cone top: 4320.59 mbrf (4309.19 mbsl)

: 4456.78 mbrf (133.78 mbsf)

1.42 m

4-1/2" casing string top: 4324.42 mbrf (1.42 mbsf)

Reentry cone

16" casing shoe: 4343.49 mbrf (20.49 mbsf)

10-3/4" casing shoe: 4440.42 mbrf (117.42 mbsf)

Packer element: 4452.33 mbrf (129.33 mbsf)

Screen: 4463.18 mbrf (140.18 mbsf)

Screen shoe: 4468.85 mbrf (145.53 mbsf)

Bottom 14-3/4" hole: 4446.0 mbrf (123.0 mbsf)

Upper screen: 4449.94 mbrf (126.94 mbsf)

Packer top: 4447.82 mbrf (124.82 mbsf)

Bottom 9-7/8" hole: 4476.0 mbrf (153.0 mbsf

Packer bottom
Screen top

2.39 m

4.45 m

6.40 m

5.35 m

7.47 m

s
c
r
e
e
n

p
a
c
k
e
r



���������	
��
�
����	�����
����������
����������	���

�
��
�����

Priority: 1

Position: 9°38.8583′N; 86°11.4337′W

Water depth (m): 4736

Sediment thickness: 400 mbsf is the depth to top of sill; sill thickness is not reliably 
resolvable from seismic records but was found by drilling to 
be 31 m; sediment thickness below sill and above basement 
is 30 m; top of basaltic basement was encountered at 460 
mbsf.

Target drilling depth (mbsf): Not applicable

Approved maximum penetration 
(mbsf):

Not applicable

Survey coverage: Shotpoint 3210 on seismic Line BGR-99-44 (C. Ranero 
[GEOMAR, Germany], pers. comm, 2001; C. Reichert [BGR, 
Germany], pers. comm., 2001)

Track line: seismic BGR 99-44 and CR-20
Objectives: • Remove originally installed OsmoSamplers.

• Install replacement OsmoSamplers.

Drilling program: None

Logging program: None

Nature of rock anticipated: Hemipelagic and pelagic sediments, gabbro sill, and basalt.
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S
ite 1253 Trackline

Navigation CR20 (circles) and BGR9944 (squares)
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Seismic Line CR-20 (Site 1039)
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Priority: 1

Position: 9°39.2716′N; 86°11.1492′W

Water depth (m): 4312

Sediment thickness: (m) 490

Target drilling depth (mbsf): Not applicable

Approved maximum penetration 
(mbsf):

Not applicable

Survey coverage: Shotpoint 2806 on seismic Line CR-20 (K. McIntosh [UTIG, 
USA], pers. comm., 2001) and shotpoint 3173 on seismic 
Line BGR-99-44 (C. Ranero [GEOMAR, Germany], pers. 
comm, 2001; C. Reichert [BGR, Germany], pers. comm., 
2001).

Track line: seismic BGR 99-44 and CR-20
Objectives: • Remove originally installed OsmoSamplers.

• Install replacement OsmoSamplers.

Drilling program: None

Logging program: None

Nature of rock anticipated: Deformed claystone and hemipelagics.
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S
ite 1255 Trackline

Shotpoint Navigation CR-20 (circles) and BGR-99-44 (squares)

  86oW 
 11.20' 

 11.10'

   9oN 
 39.20' 

 39.30'

2796

2798

2800

2802

2804

2806

2808

2810

2812

2814

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

Site 1255

Site 1255
��



�
�
�
�
�
����

	

�
�


�

�
�
��
	
�����


�
��
�
�
�
�
��
�

Seimic Line CR-20 (Site 1255)
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Seismic Line BGR 99-44 (Site 1255)
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